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Abstract
The ξ ′ giant-unit-cell phase of the Al–Pd–Mn alloy system exhibits an almost
temperature-independent electrical conductivity with a value typical of metallic
alloys, but an anomalously low thermal conductivity comparable to that of
thermal insulators. The origin of the T -independent conductivity is analysed by
determining the spectral conductivity function σ(E) from a combined analysis
of the electrical conductivity σ(T ) and the thermoelectric power S(T ) using
a phenomenological approach. It is found that the T -independence of the
conductivity results from the specific form of the spectral conductivity, which
shows very weak variation over an energy scale of several kBT around the Fermi
level, but exhibits fine structure that yields observable effects in σ(T ) and S(T ).

Giant-unit-cell intermetallics, sometimes also called ‘complex metallic alloys’ (CMAs) [1],
exhibit complex structures that contain some hundred up to several thousand atoms in the unit
cell. Examples are the ‘Bergman phase’ Mg32(Al, Zn)49 with 162 atoms in the unit cell [2],
orthorhombic ξ ′-Al74Pd22Mn4 (258 atoms/unit cell) [3, 4], λ-Al4Mn (586 atoms/unit cell) [5],
cubic β-Al3Mg2 (1168 atoms/unit cell) [6], and the heavy-fermion compound YbCu4.5,
comprising as many as 7448 atoms in the supercell [7]. These giant unit cells contrast with
elementary metals and simple intermetallics whose unit cells in general comprise from single
up to a few tens of atoms only. The giant unit cells with lattice parameters of several nanometres
provide translational periodicity of the CMA crystalline lattice on the scale of many interatomic
distances, whereas on the atomic scale the atoms are arranged in clusters with polytetrahedral
order, where icosahedrally coordinated environments play a prominent role. The structures of
CMAs thus show duality; on the scale of several nanometres, CMAs are periodic crystals,
whereas on the atomic scale they resemble quasicrystals (QCs) [8]. The high structural
complexity of CMAs together with the two competing physical length scales—one defined
by the unit-cell parameters and the other by the cluster substructure—may have a significant
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impact on the physical properties of these materials, such as the electronic structure and lattice
dynamics. On this basis, CMA materials are expected to exhibit novel transport properties, like
a combination of metallic electrical conductivity with low thermal conductivity, and electrical
and thermal resistances tunable by varying the composition, as recently observed in a series of
Al–transition-metal CMAs [9].

An interesting electronic transport property was observed recently [4] in the ξ ′
phase of the Al–Pd–Mn alloy system, where the electrical resistivity showed an almost
negligible temperature dependence between 300 and 4 K, with the total variation R =
(ρ300 K − ρ4 K)/ρ300 K ≈ 1%. While weakly T -dependent resistivities are not uncommon for
amorphous alloys and bulk metallic glasses [10] lacking long-range-ordered crystalline lattices,
the T -independent resistivity of ξ ′-Al–Pd–Mn was observed on monocrystalline samples of
good lattice perfection and structural homogeneity. In our previous work [4], a short account
of this phenomenon was given, whereas here we elaborate the T -independent resistivity (or
its inverse, the conductivity) of the ξ ′-Al–Pd–Mn in more detail by reconstructing the spectral
conductivity function, σ(E), in the vicinity of the Fermi level EF by means of a simultaneous
analysis of the experimental electrical conductivity and the thermoelectric power curves. It is
interesting that ξ ′-Al–Pd–Mn possesses another unusual physical property—an anomalously
low thermal conductivity [4], which is as low as that of amorphous SiO2, a known thermal (and
electrical) insulator. We believe that this combination of a T -independent electrical resistivity
of moderate size (ρ ≈ 200 μ� cm) along with a remarkably low thermal conductivity
(κ < 10 W m−1 K−1) supports the interest of ξ ′-Al–Pd–Mn and related CMAs for potential
use in technological applications as ‘smart’ materials (e.g. T -independent electrical resistors
with low heat dissipation).

Our theoretical analysis is based on previous ab initio band structure calculations by
Landauro and Solbrig [11–13], who proposed a spectral conductivity model σ(E) that
satisfactorily describes the electronic transport properties of both QCs and CMAs over a wide
temperature range. Following their approach, a phenomenological model was subsequently
introduced [14–18], relating several topological features (like maxima, minima and sign
reversal) in the T -dependent transport coefficients to certain features in the electronic structure.
Within this model, analytical expressions describing the main topological features of the T -
dependent electrical conductivity, σ(T ), and the thermoelectric power, S(T ), were derived in
terms of a set of phenomenological coefficients, gi and ξ j . The coefficients ξ j are in turn used
to reconstruct the spectral conductivity function σ(E), and under certain approximation also
the electronic density of states (DOS) function N(E) in the vicinity of EF. Knowledge of
σ(E) then enables us to discuss the origin of the unusual electronic transport properties of the
ξ ′-Al–Pd–Mn phase.

According to the phenomenological model [14–16], the electrical conductivity and the
thermopower can be well approximated by

σ(T ) = σ0(1 + ξ2bT 2 + ξ4b2T 4 + (g1ξ4 − g2ξ3)b
3T 6), (1)

and

S(T ) = −2|e|L0T
ξ1 + ξ3bT 2 + (g0g2ξ4/4 − g3ξ3)b2T 4

1 + ξ2bT 2 + ξ4b2T 4 + (g1ξ4 − g2ξ3)b3T 6
, (2)

respectively. Here σ0 is the residual electrical conductivity, L0 = π2k2
B/3e2 = 2.44 ×

10−8 V2 K−2 is the Lorenz number and b = e2L0. The set of parameters ξ j can be explicitly
expressed [18] in terms of the Landauro–Solbrig electronic model parameters [11–13] and
can be regarded as phenomenological coefficients containing detailed information about the
electronic structure of the sample. The lowest-order phenomenological coefficients are related
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to the topology of the spectral conductivity σ(E) at the Fermi level by means of the following
expressions (

d ln σ(E)

dE

)
EF

= 2ξ1, (3)

and (
d2 ln σ(E)

dE2

)
EF

= 2(ξ2 − 2ξ 2
1 ). (4)

The conductivity spectrum σ(E) takes into account both the DOS structure, N(E), and
the diffusivity of the electronic states, D(E), according to Einstein’s relation σ(E) =
e2 N(E)D(E). Within the approximation of an energy-independent electronic diffusion
constant, D �= D(E), in the vicinity of EF, equations (3) and (4) yield the slope and curvature
of the DOS at EF.

The parameters ξ j are extracted from the experimental σ(T ) and S(T ) curves by the
following fitting analysis. We rewrite equation (1) in the form

σ(T ) = σ0(1 + BT 2 + CT 4 + DT 6), (5)

where, according to equation (1), B = ξ2b, C = ξ4b2 and D = (g1ξ4 − g2ξ3)b3. Equation (2)
is likewise rewritten as (expressed in μV K−1)3

S(T ) = −0.0488 T
a + f T 2 + gT 4

1 + BT 2 + CT 4 + DT 6
, (6)

where, according to equation (2), a = ξ1, f = ξ3b and g = (g0g2ξ4/4 − g3ξ3)b2, while
the parameters B , C and D are those defined in equation (5) describing the conductivity.
A simultaneous fit of the σ(T ) and S(T ) thus yields the required coefficients ξ1 = a (in
units eV−1), ξ2 = B/b eV−2, ξ3 = f/b eV−3 and ξ4 = C/b2 eV−4. In this way, the
consistency of fitting both transport curves by the same set of parameter values is guaranteed.
Following the algebraic procedure described in the appendix of [18], knowledge of the
phenomenological coefficients ξi enables derivation of the spectral conductivity σ(E) on the
basis of the Landauro–Solbrig model [11–13]

σ(E) = B̄

π

{
γ1

(E − δ1)2 + γ 2
1

+ α
γ2

(E − δ2)2 + γ 2
2

}−1

. (7)

This model satisfactorily describes the electronic structure of both QCs and CMAs close to the
Fermi level in terms of a wide Lorentzian peak (related to the Hume–Rothery mechanism) plus
a narrow Lorentzian peak (related to hybridization effects). The model includes six parameters,
determining the heights and widths of the Lorentzians, their positions with respect to EF, δi ,
and their relative weight in the structure, α. The parameter B̄ is a scale factor measured in units
of (� cm eV)−1.

According to the structural model by Boudard et al [3], the ξ ′-Al–Pd–Mn structure is
described in terms of an orthorhombic unit cell with space group Pnma (No. 62) and the
lattice parameters a = 2.354 nm, b = 1.656 nm and c = 1.234 nm. There are 320 atomic
sites within the giant unit cell, out of which about 258 are occupied on average due to fractional
occupation of several sites. The skeleton of the unit cell is built up of atomic clusters of the
distorted pseudo-Mackay icosahedra (figure 1), whereas the intermediate space is less clear and
contains considerable disorder. Our study included two monocrystalline samples, grown by the
Bridgman technique, with average compositions Al73Pd22.9Mn4.1 (in the following abbreviated

3 In equation (6), the prefactor −0.0488 is given in units μV eV K−2, so that inserting T in units of kelvin and all
terms in the numerator in units of eV−1 yields the thermopower S(T ) in the standard units of μV K−1.
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Figure 1. A view of the ξ ′-Al–Pd–Mn skeleton structure along the [0 1 0] direction [3]. Mn atoms
form a planar flattened-hexagon lattice and are located in the centres of pseudo-Mackay icosahedra.
The two interpenetrating polyhedra that form the outer shell of the pseudo-Mackay cluster (a 12-
atom Pd icosahedron (white atoms) and a 30-atom Al icosidodecahedron (black atoms)) are shown.

as the ξ ′-AlPdMn-1 sample) and Al72.7Pd23.2Mn4.1 (ξ ′-AlPdMn-2). Their structural details are
reported in [4] and the transport measurements were conducted along the [0 1 0] pseudo-tenfold
direction.

The electrical conductivity curves between 4 and 300 K are displayed in figure 2(a). The
inverse conductivity values (the electrical resistivity ρ = σ−1) amount about 200 μ� cm.
The total variation of σ(T ) over this temperature range is very small, amounting 1.4% for ξ ′-
AlPdMn-1 and 0.5% for ξ ′-AlPdMn-2. Upon heating from 4 K, σ(T ) values first exhibit a tiny
decrease up to about 150 K and then stay constant at higher temperatures. The thermopowers
S(T ) are displayed in figure 2(b). Their values are small, about S300 K ≈ −6 μV K−1, and
show smooth behaviour with several changes of slope within the investigated temperature
range. Such a structure cannot be reproduced within the free-electron approximation, where
S = −(π2k2

B/2|e|EF)T is a linear function of temperature. The experimental σ(T ) and
S(T ) data were fitted simultaneously with equations (5) and (6) and the best fits are shown
in figures 2(a) and (b) by solid curves, whereas the fit parameter values are collected in table 1.
The σ(T ) fits are excellent whereas the S(T ) fits are not so good, especially for the ξ ′-AlPdMn-
2 sample, the data for which span a shorter temperature range. Accordingly, the parameter g,
related to the higher temperature term in the thermopower fitting curve in equation (6), takes
on significantly different values for both samples. Fortunately, this parameter is irrelevant for
the subsequent derivations.

The coefficients ξ j were extracted from the parameter values in table 1 and are collected in
table 2. According to equation (1), a negative ξ2 value implies a negative temperature coefficient
of the electrical conductivity at low temperatures, as it is observed in the experimental σ(T )

curves shown in figure 2(a). The reconstructed spectral conductivity functions σ(E) according
to equation (7) are displayed in figure 3. In figure 3(a), the σ(E) of the ξ ′-AlPdMn-1 and ξ ′-
AlPdMn-2 samples are shown together with the spectral conductivities of the i -Al63Cu25Fe12

icosahedral quasicrystal [17] and the Al73.6Mn17.4Si9 1/1 cubic approximant of the icosahedral
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Figure 2. (a) Electrical conductivity σ(T ) and (b) thermoelectric power S(T ) of the investigated
ξ ′-Al–Pd–Mn samples as a function of temperature. Solid curves are best fits obtained by a
simultaneous analysis of the conductivity and thermopower data using equations (5) and (6) and
the fit parameters are given in table 1.

Table 1. Fit parameter values obtained from simultaneous fits of the σ(T ) and S(T ) data displayed
in figure 2.

ξ ′-AlPdMn-1 ξ ′-AlPdMn-2

σ0 (�−1 cm−1) 4719 5241
B (×10−7 K−2) −2.8 ± 0.7 −6.2 ± 0.3
C (×10−11 K−4) 0.3 ± 0.2 1.3 ± 0.1
D (×10−17 K−6) 2 ± 1 −8 ± 1
a (eV−1) 0.39 ± 0.01 1.04± 0.01
f (×10−6 eV−1 K−2) −0.52 ± 0.06 −10 ± 0.4
g (×10−12 eV−1 K−4) 1.6 ± 0.3 58 ± 3

phase [18], obtained by identical simultaneous analysis of the σ(T ) and S(T ) data. We observe
that the σ(E) of the latter phases are deeper at EF and steeper in the wings, indicating the
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Figure 3. (a) Spectral conductivity function σ(E) of the investigated ξ ′-Al–Pd–Mn samples in
the vicinity of the Fermi level, as reconstructed from the electronic model parameters ξ j listed
in table 2. Spectral conductivities of the i-Al63Cu25Fe12 icosahedral quasicrystal [17] and the
Al73.6Mn17.4Si9 1/1 cubic approximant of the icosahedral phase [18] are shown for comparison.
(b) Spectral conductivities of the ξ ′-Al–Pd–Mn samples from panel (a) on an expanded vertical
scale.

Table 2. Phenomenological coefficients ξ j extracted from the parameter values in table 1 according
to the algebraic procedure described in the appendix of [18].

ξ1 (eV−1) ξ2 (eV−2) ξ3 (×103 eV−3) ξ4 (×105 eV−4)

ξ ′-AlPdMn-1 0.4 −15 −0.02 0.06
ξ ′-AlPdMn-2 1.0 −25 −0.4 0.22

existence of a pseudogap in the icosahedral compounds. The absence of a pseudogap in the case
of ξ ′-Al–Pd–Mn samples indicates that the Hume–Rothery mechanism is less effective there
and the electrical conductivity is consequently higher. The σ(E) curves of the ξ ′-Al–Pd–Mn
samples are relatively flat as compared to i -Al63Cu25Fe12 and Al73.6Mn17.4Si9. Nevertheless,
when considered at a finer scale, the σ(E) curves of the ξ ′-Al–Pd–Mn samples exhibit rich
topology, as shown in figure 3(b). The presence of relative maxima and minima in σ(E) close

6



J. Phys.: Condens. Matter 19 (2007) 176212 E Maciá and J Dolinšek

to EF must give rise to observable effects in the S(T ) curves, as indeed observed in their wiggly
behaviour in figure 2(b). In particular, we see in figure 3(b) that the Fermi level is located close
to a relative maximum in the σ(E) curves rather than a minimum. By plugging the ξ1 and ξ2

values from table 2 into equation (4), we obtain (d2 ln σ(E)/dE2) = −31 eV−2 for the ξ ′-
AlPdMn-1 sample and (d2 ln σ(E)/dE2) = −54 eV−2 for the ξ ′-AlPdMn-2, thus quantifying
the negative (maximum-type) curvature of the spectral conductivity function at the Fermi level.

Knowing σ(E), the origin of the T -independent conductivity of the ξ ′-Al–Pd–Mn is
evident from the Kubo–Greenwood formula σ(T ) = ∫

dE σ(E)[−∂ f (E, μ, T )/∂ E], where
μ ≈ EF is the chemical potential and f (E, μ, T ) is the Fermi–Dirac distribution function.
A T -independent conductivity is obtained when σ(E) does not change noticeably over the
energy scale covered by the derivative (−∂ f /∂ E) of the Fermi–Dirac function that is centred
at EF and has a full width at half height of about 3.5 kBT (where, e.g., 3.5 kBT = 90 meV
at T = 300 K). From figure 3(a) we observe that this is indeed the case for the two ξ ′-Al–
Pd–Mn samples, whereas the σ(E) of i -Al63Cu25Fe12 and Al73.6Mn17.4Si9 vary quite strongly
on the same energy scale due to the pseudogap at EF. The origin of the almost T -independent
electrical conductivity of ξ ′-Al–Pd–Mn CMAs can then be traced back to the specific form
of the spectral conductivity σ(E), which exhibits very weak variation over the energy scale of
several kBT around the Fermi level. In contrast to the icosahedral i -Al–Pd–Mn QCs, ξ ′-Al–Pd–
Mn CMAs do not exhibit a pseudogap at EF in the spectral conductivity. Yet, their σ(E) show
some fine structure that yields observable effects in the T -dependent electrical conductivity
and thermoelectric power curves. These electronic structure-related effects highlight the
difference between ξ ′-Al–Pd–Mn CMAs and conventional free-electron alloys. Here it is worth
noting that our analysis accounts for the electronic features of the investigated compounds
only and does not include the possible effect of phonons on the electrical conductivity and
the thermopower. This approximation relies on the negligible influence of phonons on the
transport properties of these samples, as indicated by the absence of a noticeable positive
temperature coefficient in the electrical resistivity upon heating and the anomalously low lattice
thermal conductivity of ξ ′-Al–Pd–Mn (see figure 6 of [4]). The lattice contribution to the
thermal conductivity of the investigated ξ ′-Al–Pd–Mn samples at room temperature amounts
to about κlatt ≈ 5 W m−1 K−1 [4], which is of the same order as that of the amorphous SiO2

(where κ300 K = 2.8 W m−1 K−1 was reported [19]), which is both a thermal and electrical
insulator.
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